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COMMENT 

Critical dynamics of the spin-exchange model in quasilinear 
fractal geometries 

James H Luscombe 
Ames Laboratory-USDOE, Iowa State University, Ames, IA 50011, USA 

Received 27 May 1986 

Abstract. We comment on the dynamic critical exponents recently reported by Leyvraz 
and Jan, in particular that for the spin-exchange kinetic Ising model in one dimension, 
z = 3. This result is at variance with rigorous inequalities that z cannot be less than five 
for this model, i.e. z z 5 .  The source of the discrepancy appears to lie in the authors’ 
Monte Carlo algorithm which subsumes a critically slow dynamical process, leading to an 
apparently faster dynamics in the critical region. In addition, the authors extend their 
finding for one dimension to the quasilinear (non-branching) fractal Koch curve, concluding 
z = 3d,, where df is the fractal dimension. We discuss the physical factors comprising the 
lower bound to the dynamic exponent in one dimension, z=5. We then obtain the 
generalised lower bound for spin-exchange dynamics on the non-branching Koch curve, 
z=3df+d ,  = 5df, where d, is the random walk dimension. 

In a recent comment, Leyvraz and Jan (U) (1986) discuss the critical dynamics of 
several discrete spin models in one dimension. For the four-state clock model and the 
three- and four-state Potts models with single spin-flip kinetics (model A, no conserva- 
tion laws) U find the dynamic critical exponent z = 2 and for the spin-exchange kinetic 
Ising model ( S E K I )  (model B, conserved order parameter), z = 3. In addition, LJ extend 
these results to quasilinear, i.e. non-branching, fractal geometries, obtaining z = 2df 
and z=3df ,  respectively, where df is the fractal dimension. The purpose of this 
comment is twofold. We discuss these findings, arguing that the authors’ results for 
model A are inconclusive, and more importantly, that the authors’ conclusions for the 
S E K I  model are at variance with rigorously known results. Secondly, after discussing 
the physics of the S E K I  model in one dimension, we then obtain the generalised lower 
bound to the dynamic critical exponent for this model on the non-branching Koch 
curve, z = 3df+d, = 5dr where d, is the random walk dimension. 

The conclusion that z = 3  for the S E K I  model in one dimension is incompatible 
with rigorous inequalities that z cannot be less than five for this model, i.e. 2 2 5 .  

Within numerical accuracy, LJ obtain z = 3 in a Monte Carlo ( MC) simulation of the 
spin-exchange dynamics, which they note is consistent with the conventional result 
for model B (Hohenberg and Halperin 1977), z = 4 - 17. We discuss below that ‘stan- 
dard’ conventional theory does not hold at a zero temperature critical point, in that 
there is an ‘anomaly’ in the kinetic coefficient due to the freezing of the system. It  is 
this ‘extra’ slowing down which leads to the larger value, z = 5 .  The authors take as 
their unit of time the number of MC steps for spins at a domain wall to exchange. This 
interchange requires two bonds to be broken, proceeding at an energy cost of 4 K, 
which at low temperatures ( K  + 00) occurs at a critically slow rate. Thus, the authors’ 
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definition of the basic unit of time subsumes one of the mechanisms of critical slowing 
down for this problem, thereby yielding an  apparently faster dynamics in the critical 
region. Below, we develop these arguments at greater length for the one-dimensional 
model, which we then extend to the fractal case. First, however, we discuss the authors’ 
findings for model A. 

Cordery er a1 (CST) (1981) have shown for both models A and B that one can 
understand the physics of the one-dimensional dynamic critical exponent in terms of 
the motions of the boundary separating low temperature domains. For example, in 
the case of Glauber dynamics domain boundaries perform independent random walks, 
which to cover a distance N require in one dimension N’ steps. Hence, this physical 
argument yields z = 2 .  The method can also be applied to fractal geometries of 
ramification order R = 2.  Luscombe and Desai (1985) have previously employed the 
argument of CST to obtain the generalisation z = d ,  = 2 d f  for Glauber-Ising dynamics 
on the non-branching Koch curve. Below, the argument is extended to model B for 
Ising spins on the Koch curve as well. It should be noted that the conclusion z = d ,  
is exact on the Koch curve, since the Glauber model can be solved independently of 
the CST argument. Strictly, however, this type of argument provides only a lower bound 
to the actual exponent since it identifies the lowest energy barrier, and  hence the fastest 
mode, for domain motion to occur (consistent with constraints imposed by the dynamic 
universality class). The Glauber model aside, the other models mentioned above have 
not been solved exactly in one dimension. LJ base their conclusion z = 2 for model A 
dynamics on a consideration of domain wall random walks. We note then that such 
arguments d o  not in themselves determine, but can only make plausible, a given value 
of z in one dimension. For this reason, the authors should present their numerical 
evidence in support of their values for z. We note that z = 2 is undoubtedly the correct 
lower bound for the relaxational models LJ have considered. A second more serious 
consideration, however, is the fact that LJ have not presented the master equation 
transition probabilities for the models they investigate. In  one dimension there can 
be non-universal contributions to z induced by the particular form of the transition 
probability. Detailed balance is not a unique constraint in defining stochastic spin 
models and non-universal factors in the transition probability can produce critical 
effects at zero temperature. Dynamic universality classes in one dimension have been 
previously established for Ising spins by Haake and  Tho1 (1980) and more recently 
for Potts spins by Weir er a1 (1986). For example, Haake and  Tho1 show that, for 
certain models, the value of z is model dependent and can assume any value between 
two and four. Thus, in the present context, unless a well defined dynamical model is 
specified, the value of z obtained is inconclusive. By way of illustration, Weir and 
Kosterlitz (1986) also obtain z = 2 for Potts spins, while Lage (1985), using another 
model, obtains z = 3, also for model A Potts dynamics in one dimension. We now 
turn to the main consideration of this comment: the S E K I  model. 

As stated above, the one-dimensional spin-exchange model cannot be solved exactly. 
Even in the non-interacting (high temperature) limit, the dynamics is non-trivial due 
to the dynamic coupling needed to maintain spin diffusion (Mazenko and  Oguz 1982). 
However, certain results are well known for this model. Rigorous inequalities can be 
established for dynamical quantities derived from a Hermitian master equation 
(Kawasaki 1972, Halperin 1973, Mazenko and  Valls 1981). In particular, the Kawasaki 
inequality ( K I )  states that the initial response rate of the system forms an  upper bound 
to the subsequent system response. The main application of the K I  is to provide a 
rigorous lower bound to  the dynamic critical exponent. Luscombe and Desai have 
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used the K I  to establish for Glauber-Ising dynamics that z 2 d r  for finitely ramified 
fractal geometries, e.g. the Sierpinski gasket. In the present context, the K I  applied to 
the one-dimensional spin-exchange model yields z 3 5 .  Haake and Tho1 (1980), using 
a variational technique, also obtain z 2 5 for the general spin-exchange model. Zwerger 
(1981) obtains z = 5 in a particular model for which certain non-linearities in the 
equations of motion vanish in the hydrodynamic limit (Mazenko and Oguz 1982). The 
domain boundary diffusion argument of CST for model B also yields z = 5 (see discussion 
below). Note that the CST result conforms with the lower bound. Thus, the authors’ 
finding of z = 3 is at variance with previously established results for the one-dimensional 
spin-exchange kinetic Ising model. 

The agreement of the authors’ result with the conventional theory of dynamic 
critical phenomena for model B, z = 4- q, is specious. In conventional theory, to 
which the lower bounds above correspond, the characteristic response frequency at 
wavevector k, 

is given by the ratio of a transport coefficient to the order parameter susceptibility. In 
the case of model B, for large wavelength 

( 2 a )  
where the k 2  dependence signifies that the order parameter is conserved. At criticality, 

(26)  
and the standard conventional exponent, 4 - q is obtained. The argument, however, 
presupposes that the coefficient To remains finite at T, which, in the absence of 
mode-mode coupling effects, would be true except if the phase transition happens to 
occur at zero temperature. In the present context, To is the canonical average of the 
spin-exchange transition probability (see Mazenko and Oguz 1982) 

w , ( k )  =rail (1) 

TA = Tok2 + O( k4) 

x i ‘  - k 2 - ”  

To = ( W,,,) (3 )  
where i and j are the exchanging spins and (Y is the exchange rate for non-interacting 
spins. To must uanish for a system in equilibrium as the temperature approaches zero 
since the spins become predominantly aligned with their neighbours. If we say To 
vanishes in the critical region like t-‘, then the conventional exponent for one dimension 
will be given by z = 4 + x -  q. For a wide class of spin exchange models (Haake and 
Tho1 1980, Zwerger 1981, CST) 

(4) 
and hence x = 2 (5, is the one-dimensional correlation length). Note however that for 
the model of Mazenko and  Oguz (1982), x = 3. The point here though is that the 
smallest dynamic exponent for conserved order parameter dynamics in one dimension 
is z = 5 .  It should be noted that conventional theory results from projecting the order 
parameter out of the full non-linear equations of motion. The K I  states that the 
‘orthogonal’ non-linearities can in principle lead to a slower critical dynamics than 
the projected linear equations of motion, which is why the full dynamic exponent is 
always larger than the conventional exponent (see Mazenko and  Valls 1981). For the 
Glauber model the order parameter equation of motion is already linear. In this sense 
conventional theory is exact for the Glauber model, and yet the exponent is not given 
by the analogous conventional expression for model A, z = 2 - 7. Again, one must 
account for the vanishing of the kinetic coefficient at zero temperature, z = 2 + x - q, 
with x = 1 for the Glauber model. 

ro - (Y e-4K - CY[;’ 
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We now outline the CST argument for spin exchange dynamics, modified to the 
fractal curve. A spin at a domain boundary exhanges into the ‘wrong’ domain at 
energy cost 4K, occurring at the critically slow rate (equation (4)) a e-4K = 
where 6 is the fractal correlation length 6 = 6;‘dr (Gefen er a1 1983). Each succeeding 
exchange of this spin further into the domain occurs as a random walk, and the 
probability of the reversed spin exchanging through the domain and not returning to 
its starting point is, as shown by CST, N - ’  where N is the number of domain sites as 
measured along the fractal. N is related to 6 via Thus the rate of one spin 
passing through the domain, and the entire domain shifting one unit, is  CY[-'^^. For 
the domain itself to move a net distance 6 requires on the fractal geometry td- steps. 
Hence, the domain will traverse the distance 6 in a time - 5 d w + 3 d f ,  implying z = d ,  + 3df. 
For reasons stated above this is a lower bound to the actual exponent. To the best of 
our knowledge, this is the first time this expression has been derived. 

As stressed above, the authors should specify their dynamical model, i.e. transition 
probability, if meaningful conclusions are to be drawn. To obtain z = 3 would require 
a model in which To remains finite at zero temperature. Such a model, however, cannot 
satisfy detailed balance since the dynamics must stop in this limit. The authors, through 
their MC algorithm, in effect absorb To into an overall temperature-independent 
exchange rate. Thus, it is not surprising they obtain a reduced exponent. However, 
the ‘waiting time’ for domain wall spins to exchange is part of the physics of the 
problem since there is an energy barrier for this motion to occur, but which is neglected 
in the authors’ MC procedure. 

In summary, the finding by Leyvraz and Jan of the dynamic critical exponent z = 3 
for the spin-exchange kinetic Ising model in one dimension is misleading, since the 
authors’ unit of time itself undergoes critical slowing down. This discrepancy is related 
to the neglect of the activation barrier for domain boundary spins to exchange, leading 
to an apparently faster dynamics in the critical region. In addition, we have formulated 
the domain diffusion argument for spin-exchange dynamics on a quasilinear fractal 
obtaining the lower bound to the dynamic exponent z = d ,  + 3df = 5 4 .  

The Ames Laboratory is operated for the USDOE by Iowa State University under 
Contract No W-7405-Eng-82. We would like to thank P 0 Weir and B N Harmon for 
useful discussions. 
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